The Problem with Opinion Pieces

The federal government just shut down, and Trump is going to unceasingly trumpet, pardon the pun, that the Democrats shut down the government just to satisfy a small minority of illegal immigrants. I was furious that the Democrats would do such a stupid thing, alienating the white voters they need to regain power.

So despite my firm belief that political pundits are right only by chance, I dashed off an essay bemoaning the Democrats’ elevation of principle over reality. Then I remembered that if enough Hispanics and blacks voted, they would tip the balance in favor of Democrats. So maybe this strategy was a good one after all.

By considering alternative viewpoints, my certainty that the Democrats had made a terrible error dissolved into skepticism about whether I could predict which strategy might work, or in general that I had more insight into the unpredictable future than the next self-proclaimed pundit.

It is impossible to predict events on a fine scale, as civilization is far too complicated to model in any detail. However, I do believe that if you back far enough away it is possible to create accurate (if approximate) models of selected aspects of complex systems. The one about which I hammer away is the ample scientific evidence that civilization in general and the U.S. way of life in particular are both unsustainable, that some sort of major correction will occur in the near future, and that no one is making plans for dealing with this over-riding issue.

So you are spared another liberal rant.

“The Evolution of Beauty” by Richard O. Prum

Still life, watercolor, 9 x 12.

Another must-read! Either I am not discriminating enough, I don’t read enough, or terrific books are more common (I unsurprisingly favor the latter interpretation).

I first heard about Richard Prum when he gave the talk at one of the annual Darwin’s Day Dinners* in Norwalk, CT, where we lived until late 2017. He gave a terrific presentation, but it didn’t quite register with me how revolutionary his ideas were. I had read Darwin’s second major book on Evolution, “The Descent of Man, and Selection in Relation to Sex,” and had internalized the notion of sexual selection in a dim way, so Prum’s  featuring it was not surprising. Prum calls it “Darwin’s really dangerous idea,” a reference to Daniel Dennett’s book “Darwin’s Dangerous Idea,” about natural selection.

Alfred Russel Wallace famously came up with the idea of natural selection independently and sent Darwin a letter outlining his theory. This galvanized Darwin to finish his book, which he had been reluctant to publish. Wallace was younger than Darwin, and had not spent the years of intense thought and field research that gave Darwin’s theory such depth and explanatory power. Far from feeling resentful that natural selection had become “Darwin’s theory,” he was an enthusiastic promoter of Darwin. But he was also deeply religious, unlike the agnostic, growing on atheistic, Darwin.

When “Descent of Man” was published in 1871, 12 years after “Origin,” it was brutally attacked for a variety of reasons described by Prum. It was just too much for a Victorian readership. Wallace was scandalized, feeling that Darwin had betrayed his own theory and feeling that the book undermined his religious beliefs. Wallace subsequently did such a thorough job of trashing the idea of sexual selection based on aesthetic choice that it was basically ignored for 140 years.

Instead, there grew the notion, embedded in nearly all research to the present and parroted in every book on evolution I have read, that traits were either adaptive (fit to the animal’s environment), neutral, or the secondary result of adaptive traits. In my extensive thinking about the origins of art, I have gone along with the herd, searching for some reason why art would be adaptive. That’s why this book was so revealing to me, because it opened the door to other ways art might have evolved. I hope to parse the implications in the near future.

I had not registered the extent to which adaptationism had permeated the field of evolutionary studies until I read Prum’s book. I happened to reread the section on art in Steven Pinker’s book “How the Mind Works” and it was now clear to me why he had famously dismissed art as a form of sensory “cheesecake:” he couldn’t envision how pleasure could be the basis for the evolution of art. Prum bars no holds in his scorn of stubborn adaptationists like Pinker and Richard Dawkins. He also convincingly debunks many notions that have made it into the popular press, such as the idea that men have evolved to prefer hourglass figures, symmetrical features, and features that are an averaged composite, all of which have been thoroughly disproved. He particularly attacks the tired notion that fancy plumage is an indication of fitness, another attempt by adaptationists to explain beauty in nature.

The meat of Prum’s book are his wonderful descriptions of the behavior of tropical birds – he is a master ornithologist who has spent much time studying birds in tropical forests around the world (deafness has reduced his field work). Of particular interest is his discussion of the details of sexual anatomy and mating behavior in ducks (which have penises, unlike 95% of birds). Later in the book he applies his insights to human beauty, and particularly to how sexual selection is the likely source for the exaggerated sexual ornaments and behavior in humans. This is worth reading regardless of your interest in the details of evolution.

Throughout he relates his findings to female empowerment by means of sexual selection. He is careful to distinguish female power through choice from female domination, which is nowhere found. Prum makes the depressing conjecture that prior to the evolution of agricultural civilization women had “domesticated” men and established a substantial amount of female control through choice, only to have this  control almost completely undermined by the evolution of paternalistic hierarchies.

Prum is always careful to distinguish solid fact and observation from speculation, and to note that many of his fruitful ideas need to be verified by further research.

This is a beautifully written book full of visual delight and descriptions of nature at her most lavishly creative. Most of all, it dramatically expands the horizons of evolution. Along with “evo-devo” and horizontal gene transfer among prokaryotes, sexual selection reduces the need to burden natural selection with carrying the entire load of explaining how and why organisms are as they are.

  • The celebration in Norwalk is among a very short list of celebrations of Darwin’s birthday, and it is truly wonderful, bringing together intellectually curious people who might not otherwise meet each other. There is a science quiz that is quite sophisticated, with various tables of 10 competing. Ours never won, but we placed a couple of years.  I hope some day that such celebrations become commonplace.  See the Wikipedia entry on “Darwin Day.”

More About “Scale”

Watercolor from life, 2016 (9 x 12)

In my last post on “Scale” by Geoffrey West I didn’t discuss in any detail the results of applying power laws to cities, and entirely avoided the last chapter, which applies scale laws to the issue of growth. I want to address these issues in this essay. The bottom line: we have a limited time to make fundamental changes.

In his approach to cities he quotes the urbanist Lewis Mumford: “The chief function of the city is to convert power info form, energy into culture, dead matter into the living symbols of art, biological reproduction into social creativity.” By analogy with biological systems, West applies the concept of metabolism to cities. But he distinguishes the “physical metabolism,” consisting of electricity, gas, oil, water, materials, products, artifacts and so on, from the “social metabolism” consisting of wealth, information, ideas and social capital.  By analyzing masses of data from many cities, he and his colleagues found that the social metabolism roughly follows a power law with an exponent of 1.15, while the exponent for physical metabolism is roughly 0.85.

What this means is that the larger the city, the more efficient is its infrastructure, by about 15% compared with what would be expected if all cities were equally efficient. By contrast, the social metabolism on average grows at a rate of about 15% greater than expected as cities get bigger. This means that the vitality and creativity of a city (as well as stress and crime) grow faster than expected as cities grow larger. In other words, after providing regular maintenance, the city’s physical metabolism provides a substantial residual of energy for growth. Quoting the author (p. 374) “The bigger the city, the faster it grows – a classic signal of open-ended exponential growth. A mathematical analysis indeed confirms  that growth driven by superlinear scaling  is actually faster than exponential: in fact it’s superexponential.” He goes on to discuss how specific cities differ from the average (for example, Corvallis Oregon greatly exceeds the number of patents expected for a city of its size while New York lags well behind expectation).

In the last chapter, he picks up the thread of superexponential growth. The scaling laws for various characteristics of animals (such as metabolism) all had sublinear exponents, meaning that they grew slower at various rates than would be expected if they increased proportionally with size). But cities are growing faster than expected. Analyzed mathematically, such growth leads to a finite time singularity. While exponential growth goes to infinity, but at some infinite time, superexponential growth goes to infinity at a specific time. Analysis by his colleagues estimate that in a growth as usual scenario the cut-off date is around 2045 – 2050.

West goes on to show that periodic innovations have “reset the clock,” effectively postponing the date certain for the system to stagnate and collapse. For example, Malthus’ expectation of imminent starvation was made obsolete by improvements in agriculture, although we may have finally run out of options for improvement (or even maintaining the status quo). However, to keep the wolf from the door, these innovations must occur at closer and closer intervals. At some point the interval between needed innovations become impractically small and the system stagnates and collapses, just somewhat later than without the innovations. Looking at how long it has taken us to make solar and wind energy practical (around 40 years), I personally think we are past the time when we can create technological innovations fast enough to stave off the singularity, for the reason that we have picked the low-hanging fruit, and important innovations may  now take longer than before.

Here I want to fall back on quotes from the book, which express the issues much better than I could summarize then:

P. 424 We live our lives on the metaphorical accelerating socioeconomic treadmill. A major innovation that might have taken hundreds of years to evolve a thousand or more years ago may now take only thirty years. Soon it will have to take twenty-five, then twenty, then seventeen, and so on, and like Sisyphus we are destined to go on doing it, if we insist on continually growing and expanding. The resulting sequence of singularities, each of which threatens stagnation and collapse, will continue to pile up, leading to what mathematicians call an essential singularity – a sort of mother of all singularities.

The great John von Neumann…made the following remarkably prescient observation more than seventy years ago: “The ever accelerating progress of technology and changes in the mode of human life…gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue.”

P.425 The increasingly rapid rate of change induces serious stress on all facets of urban life. This is surely not sustainable, and, if nothing changes, we are heading for a major crash and a potential collapse of the entire socioeconomic fabric. The challenges are clear: Can we return to an analog of a more “ecological” phase from which we evolved and be satisfied with some version of sublinear scaling and its attendant natural limiting, or no-growth, stable configuration? Is this even possible?

West acknowledges that many other factors will influence the outcome: he has concentrated on things he can measure, like any good scientist, and discovered unexpected regularities that lead to useful predictions. Climate change, pollution, extinction, pandemics, political and religious turmoil, superstition, corruption,  and so on will obviously have a huge role to play in the outcome, and only the first four can be measured to any useful extent. But taking his results as a sound analysis of one aspect of the problem – availability of energy and resources – it is sobering to realize that even this very restricted slice of a hugely complex system yields a familiar result: we must totally revise our expectations or watch civilization collapse around us. I am not optimistic that we can pull this off, and I believe West’s view is not far from mine.